

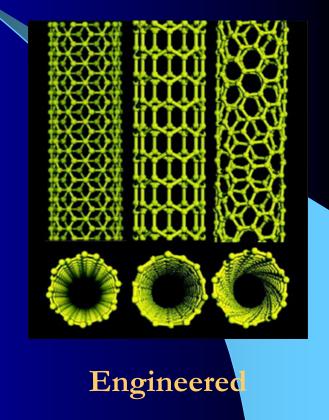
Nanotechnology: Understanding and Managing the Potential Health Risks

Brenda E. Barry, Ph.D., R.B.P. Senior Toxicologist The Cadmus Group, Inc. NEAIHA - November 16, 2006

What Is Nanotechnology?

National Nanotechnology Initiative

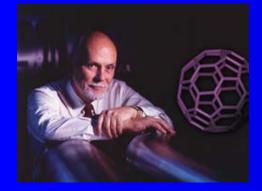
 Nanotechnology is the understanding and control of matter at dimensions of roughly 1 to 100 nanometers, where unique phenomena enable novel applications


Categories of Nanomaterials

Natural

Man-Made

A Brief History of Nanotechnology

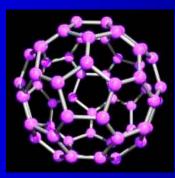

 Richard P. Feynman - 1959 There's Plenty of Room at the Bottom

Feynman

• K. Eric Drexler - 1986 Engines of Creation

Drexler

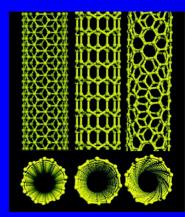
• Richard E. Smalley - 1996 Nobel Prize in Chemistry

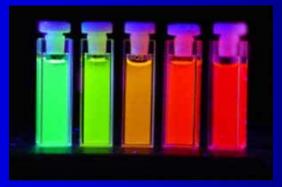

Smalley

Nanotechnology Products Are Here Now

Nanotechnology Challenges

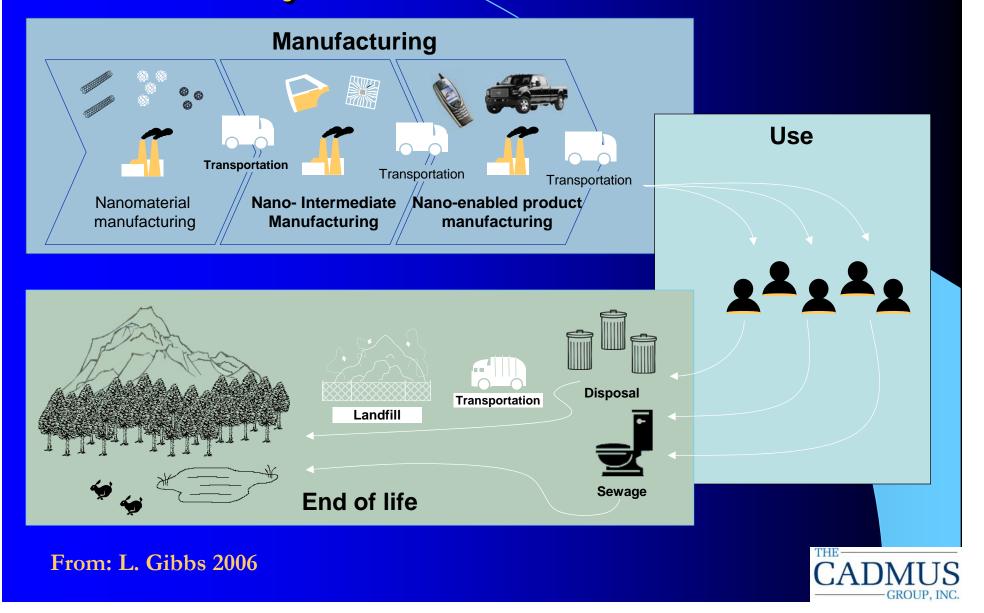
- Do nanomaterials (NM) present new and unique risks for health and safety and for the environment?
- Can the potential benefits of nanotechnology be achieved while minimizing the potential risks?




Categories of Nanomaterials

- Nanotubes
- Nanoclays
- Quantum dots
- Metal oxides


Carbon-based
Metal-based
Dendrimers
Composites


Quantum Dots

Fullerenes

Life Cycle of Nanomaterials

Health, Safety, and Environmental **Concerns for Nanomaterials** • Human implications • NM toxicity not yet well understood; nano-size materials do not behave like their bulk counterparts Reactivity of NM due to large surface area Potential for bioaccumulation Environmental implications Contamination of water and soil from **improper disposal of NM** Bio-uptake of NM and accumulation in food chain

Health and Safety Concerns for Nanomaterials

• Potential fire and explosive hazards

 Decrease in particle size reduces the minimum ignition energy and increases the combustion potential

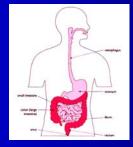
Catalytic reaction hazards

 Small size of nano-size particles has often been used to advantage as catalysts

 Engineered nanomaterials may have unpredicted catalytic potential

Nanotoxicology

 Nanotoxicology – Science of engineered nanodevices and nanostructures that deals with their effects in living organisms (Oberdorster et al. 2005)

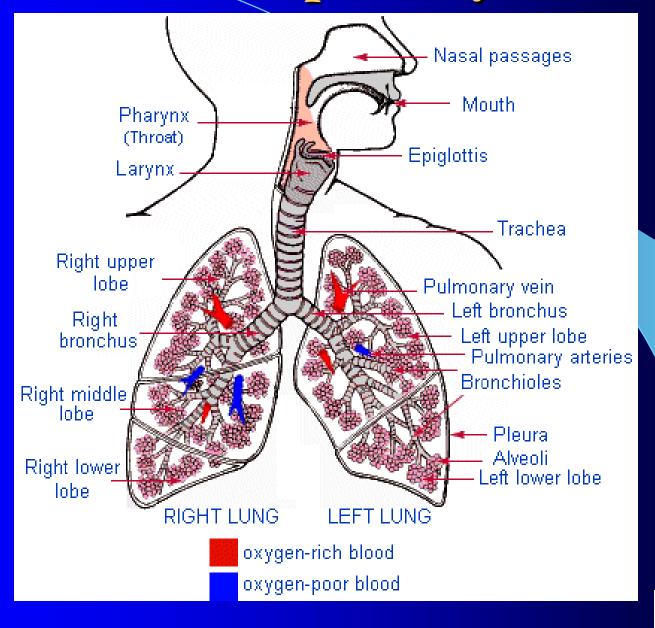

• Potential NM exposure routes include:

Inhalation

Dermal contact



Research Approaches to Understand NM Toxicity

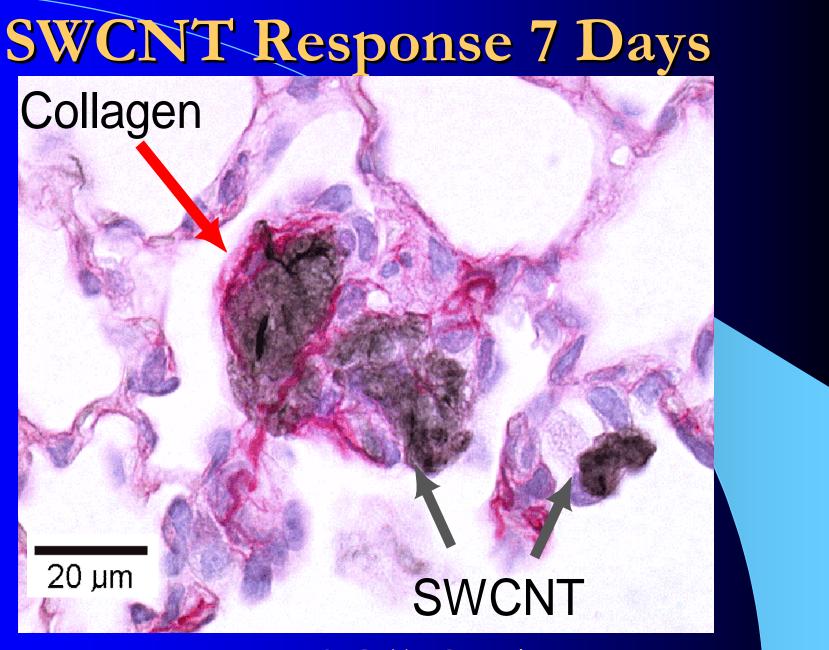

- In vitro and in vivo approaches allow study of the mechanisms and biological effects of NM on cells and tissues under controlled conditions
- In vivo models include:

 Inhalation chambers
 Intratracheal instillation
 Pharyngeal aspiration

Human Respiratory Tract

THE CADMUS GROUP, INC.


Proximal Alveolar Region SWCNT Day 3

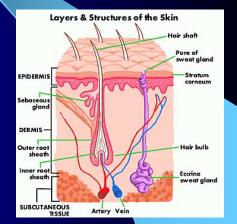

Silver-enhanced gold-labeled aggregate SWCNT, 40 ug aspiration, perfusion fixed. Mercer - NIOSH

TEM of SWCNT in Interstitium 3 Days Post Exposure

Mercer -NIOSH

Pharyngeal aspiration of 40ug SWCNT in C57BL/6 mice Mercer - NIOSH

Dose Response to Aggregate SWCNT PBS 2 months 1.0 mg/kg 2 months 50 µm 0.5 mg/kg 2 months 2.0 mg/kg 2 months THE


Translocation/Bioaccumulation of Nanomaterials

- Nanoparticles can cross alveolar wall into bloodstream
- Absence of alveolar macrophage response
- Distribution of NM to other organs and tissues
- Inhaled nanoparticles may reach brain through olfactory nerve

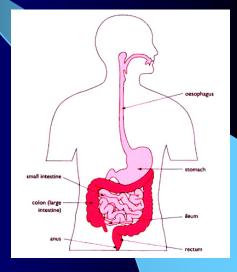
In Vitro NM Studies

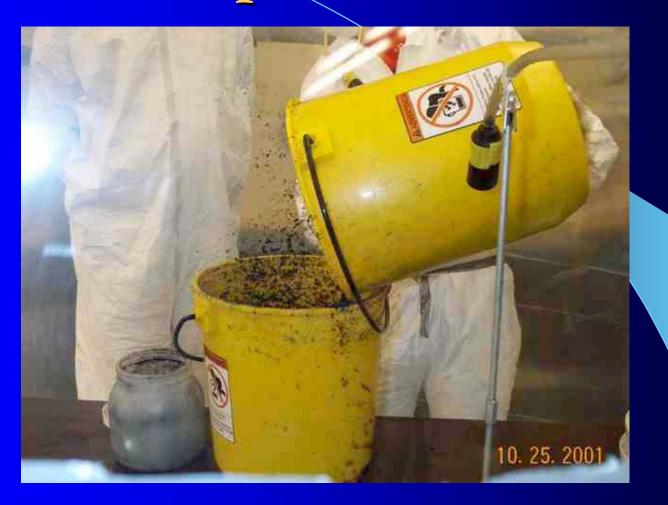
- Monteiro-Riviere et al. 2006 Isolated porcine skin flap model and HEK
 - MWCNT, substituted fullerenes, and QD can penetrate intact skin
 - Cytotoxic and inflammatory responses
- Tinkle et al. 2003 Human skin flexion studies and beryllium exposures
 - Penetration of dermis with 0.5µm an 1µm fluorescent beads

GROUP, INC

Functionalization of NM

 Different chemical groups added to the surface of CNT changed CNT properties and decreased their toxicity (Sayes et al. 2006)


 Addition of water-soluble functional groups can decrease the toxicity of pristine C₆₀ (Sayes et al. 2004)



Ingestion Pathway

- Ingestion exposures can occur through direct intake of food or materials containing NM and secondary to inhalation or dermal exposures
- Some evidence suggests that ingested NM may pass through to lymphatics
- Little research to date about Ingestion exposures and the potential for distribution of NM to other tissues

Workplace Studies

Handling Raw SWCNT

From Maynard 2005

Workplace Studies

 Maynard and coworkers (2004) determined that aerosol concentrations of NM during handling of unrefined NM material were low

- More energetic processes likely needed to increase airborne concentrations of NM
- Gloves were contaminated with NM
- Results indicated importance of dermal contact as potential exposure route

Environmental Risk Concerns Regarding NM

- What happens to NM after product use and disposal?
- What is the fate of NM in the environment?
- Do NM degrade?
- Will NM accumulate in the food chain?
- How to evaluate real world exposures to NM?

NM and Ecotoxicology

- Exposures of largemouth bass to fullerenes for 48 hr produced lipid damage in brain tissues (E Oberdorster 2004)
- Exposures of Daphnia to uncoated, water soluble fullerenes for 48 hr indicated an LC₅₀ of 800 ppb
 (E Oberdorster 2004)

Daphnia – water flea

National Institute for Occupational Safety and Health

- NIOSH is the federal agency responsible for conducting research and making recommendations for the prevention of workrelated injury and illness
- NIOSH acknowledges that the occupational health risks associated with the manufacture and use of NM are not yet clearly understood

NIOSH Critical Topic Areas

Toxicity Risk Assessment Epidemiology and Surveillance

tions

Controls Measurement Methods Exposure & Dose Safety Recommendations & Guidance Communication & Education

NIOSH Initiatives for Nanotechnology

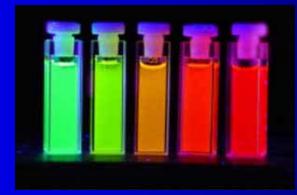
- Approaches to Safe Nanotechnology: An Information Exchange with NIOSH - July 2006
- Strategic Plan for NIOSH Nanotechnology Research: Filling the Knowledge Gaps
- Nanoparticle Information Library
- Field team investigations to assess NM exposures
- Control Banding
 - NIOSH-RAND Workshop October 2005

Environmental Protection Agency

- Toxic Substances Control Act (TSCA)
 - Framework to oversee the manufacture and risk assessment of new materials
- Resource Conservation and Recovery Act (RCRA)
- Nanotechnology White Paper
 - Draft released December 2005
- Nanoscale Materials Voluntary Program

Occupational Safety and Health Administration

- No guidance documentation yet for nanotechnology
- Participates in a federal interagency group to evaluate EHS and risk issues
- OSHA plans to develop guidance for employers and employees engaged in operations involving nanomaterials
- No standards yet proposed

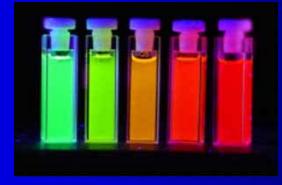

European Union and International Standards Development for NM

- EU Registration, Evaluation and Authorisation of Chemicals (REACH)
- Voluntary Standards Development
 - International Standards Organization (ISO/TC229)
 - Organisation for Economic Co-operation and Development (OECD)
 - American National Standards Institute (ANSI)
 - American Society for Testing and Materials (ASTM) International Technical Committee E56
 - Semiconductor Equipment and Materials Institute (SEMI)
 - Institute of Electrical and Electronics Engineers (IEEE)

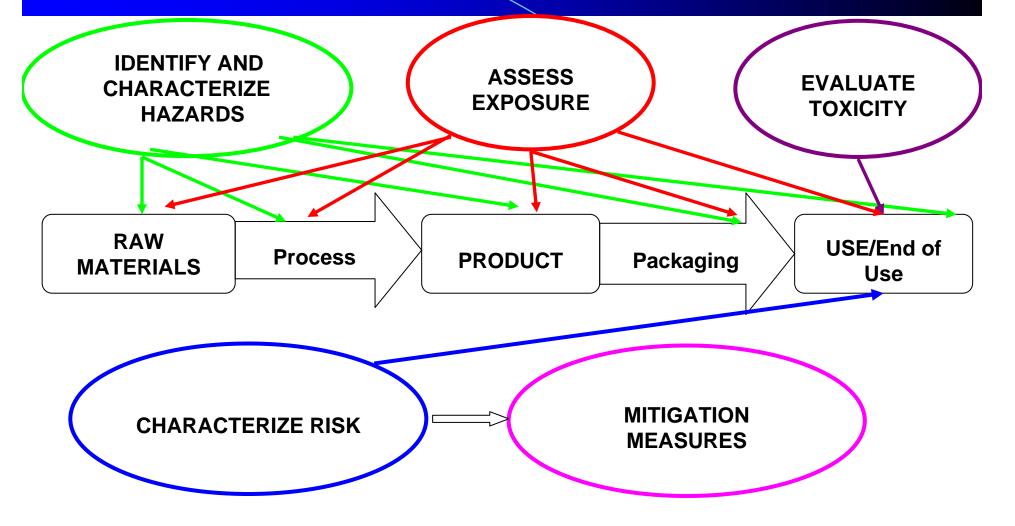
Exposure Assessment for NM

- NM pose unique challenges to traditional exposure assessment techniques
- Mass and bulk chemistry may be less important than particle size, surface area, and surface chemistry for NM

EHS Approaches to Managing **Potential Exposures to NM** Engineering controls Source enclosure Local exhaust ventilation Filters – Are HEPA adequate? Work practices Clean work areas Handwashing Shower/Change of clothes

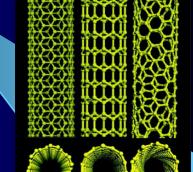

EHS Approaches to Managing Potential Exposures to NM

- Personal protective equipment
 - Clothing and gloves
 - NIOSH evaluating penetration of NM through clothing and gloves
- Respirators
 - NIOSH-certified respirators should provide protection if properly selected and fit tested
- Spill cleanup and proper NM disposal
 - Select procedures that minimize inhalation and dermal exposures
- Worker training


Assessing Risks of Nanomaterials

- Identify and characterize potential NM hazards
- Assess potential exposure scenarios
- Evaluate toxicity
- Characterize risk and uncertainty
- Communicate about risks

Cadmus Adaptive Risk Assessment Framework for NM


Cadmus Adaptive Risk Assessment Framework for NM

- Screening tool to identify and prioritize key health and process issues
- Dynamic approach that can be applied to a diverse array of hazards
- Identifies key uncertainties
- Adaptive aspect allows reevaluation of previous decisions when new information is available
- Direct application to health and safety concerns

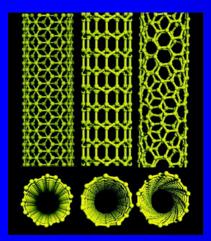
Nanotechnology Where Are We Today?

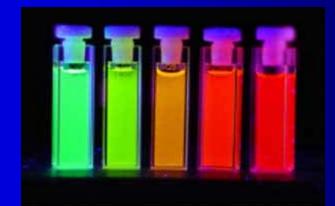
- Limited number of NM have been evaluated to date
- Mechanisms for potential NM toxicity are an active area of research

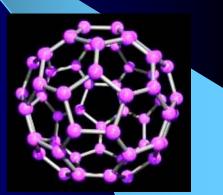
 Specific NM properties, particularly their surface characteristics, clearly affect their toxicity

Nanotechnology and EHS Where Are We Today?

- Limited data on workplace exposures to NM
- Little known about worker health risks from exposures to NM
- Numerous current initiatives to develop/recommend best practices
- No regulatory standards or guidelines – yet!


Nanotechnology Where Are We Going?




Source: Boston Globe October 7, 2006

Questions???

