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Formulas for converting the intensity-averaged particle diameter and polydispersity obtained from
quadratic cumulants (QC) analysis of photon correlation spectroscopy (PCS) data to the number-weighted
mean and variance of assumed particle size distribution (PSD) forms are derived. The approach of Thomas16

for log-normal PSDs is used to derive expressions for normal and Schultz-Zimm particle size distributions
(PSDs) assuming Rayleigh scattering. Additionally, expressions for the opposite conversion (from the
mean and variance of a number-weighted PSD to an intensity-averaged diameter and polydispersity) are
derived for normal PSDs using the Guinier approximation of the Rayleigh-Debye-Gans (RDG) form
factor for spheres. Heuristics are developed for correcting the PCS-QC-measured polydispersity Q (known
to be strongly affected by experimental and data analysis error) to facilitate the application of the conversion
formulas. The conversion formulas and corrective heuristics are then used to re-examine previously published
comparisons of PCS and transmission electron microscopy (TEM) average particle size measurements.
Additionally, the PSDs generated from PCS-QC results using the conversion formulas are compared with
the TEM-measured PSD for a Stöber silica suspension. These comparisons show that, despite the assumption
of Rayleigh scattering, the intensity to number-weighting conversion formulas applied using the Q corrective
heuristics produce reasonably accurate results outside the limits of Rayleigh scattering theory.

Introduction

Photon correlation spectroscopy (PCS)1-7 is a quasi-
elastic dynamic light-scattering technique commonly used
to characterize nanometer to submicron-sized colloidal
particles. Laser illumination of colloidal particles under-
going Brownian motion produces a randomly fluctuating
scattered intensity signal with a temporal behavior
dependent on the particles’ size and shape. The time
dependence of the fluctuations can be determined by
autocorrelating the scattered intensity signal. For spheri-
cal particles, the scattered intensity autocorrelation
function (ACF) decays exponentially with a decay constant
Γ proportional to the intensity-weighted average
Brownian diffusion coefficient D0. In the limit of low
particle concentration, hydrodynamic interactions can be
neglected, and the intensity-weighted average particle
diameter dPCS can be calculated using the Stokes-
Einstein equation

where kB is the Boltzmann constant and η and T are the
solvent viscosity and temperature.

A variety of PCS data analysis techniques3,8 can
accurately extract dPCS from measured ACF data. Pre-
dicting particle size distributions (PSDs) is more prob-
lematic. The most rigorous analysis approach involves a
numerical Laplace inversion, which is mathematically ill-
conditioned. To overcome this problem, various data
analysis methods have been developed, including non-
negative least squares, CONTIN, and maximum entropy
analysis.3,8 However, noise in the scattered intensity signal
and the dependence of the scattered intensity on the square
of the particle volume make resolution of broad or
multimodal PSDs difficult regardless of the data analysis
method used. Because of these limitations, simple analysis
methods (such as single-exponential fitting or the method
of cumulants9-11) often estimate dPCS as well as the more
complex inversion methods.

The accuracy of the average particle diameter obtained
from PCS measurements is commonly evaluated via
comparison with transmission electron microscopy (TEM)
measurements. For routine measurements, PCS analysis
is desirable because it is faster and more convenient than
TEM image analysis and does not require removal of the
suspending solvent. However, TEM analysis yields a
number-weighted particle size distribution (PSD) from
which the more representative number-weighted average
particle diameter12,13 (dTEM) can easily be calculated. The
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difference between the intensity-weighted PCS and num-
ber-weighted TEM averages can be considerable. A large
part of the difference is due to the type of average
(intensity-weighted versus number-weighted) and is
therefore a function of the particle polydispersity. How-
ever, other contributions to the difference can come from
the basis of the experimental approaches and from
approximations in the data analysis methods. For ex-
ample, TEM image analysis is based on a somewhat
subjectivesamplingofarelativelysmallnumber (generally
less than a thousand) of single particles. Conversely, the
dilute suspension volume probed by PCS typically contains
on the order of a million particles and may contain particle
aggregates and dust. Additionally, experimental effects
such as particle shrinkage under the electron beam14,15

for TEM or noise in the intensity ACF for PCS can impact
the analysis results. Consequently, it is difficult to assess
the relative importance of these contributions to the
difference between PCS and TEM measurements, and
this complicates the evaluation of the accuracy of the
analysis methods.

Approximate methods for converting the results of
simple PCS analysis techniques to number-weighted PSDs
have been developed for two reasons: first, to put the
PCS-based and TEM-based measures of average particle
diameter on a common basis for comparison, and second,
to generate PSD predictions from PCS measurements.
The methods begin by assuming a functional form of the
PSD. For example, formulas for converting the intensity-
averaged particle diameter and polydispersity obtained
from quadratic cumulants (QC) analysis of PCS data to
log-normal PSDs have been developed,16,17 and indirect
methods are available for conversion to rectangular,18

normal,18,19 and Schultz-Zimm20,21 PSDs. In this paper,
the conversion approach developed by Thomas16,22 for log-
normal PSDs will be used to derive general expressions
for converting QC analysis results to normal and Schultz-
Zimm PSDs. The simplicity of this approach makes it easy
to understand and therefore to apply (or to extend, for
example, to other PSD forms). This being said, a more
extensive consideration of the approach can be found in
the work and references of Thomas16 and in works of the
vintage of Brehm et al.23 Additionally, the intensity to
number-weighting conversion equations derived in this
paper can also be derived from the equations presented
in ref 18 for normal distributions and in ref 21 for Schultz-
Zimm distributions.

The novelty of the work in this paper is not the origin
or derivation of the intensity to number-weighting con-
version equations presented but rather their application
for converting photon correlation spectroscopy (PCS)

results to a number-weighted basis in the manner
presented. On the basis solely of the work of Thomas16

(and the earlier works of that vintage), one could rightly
infer that the conversion formulas developed and applied
previously produce results that are so unreasonable
(because of the difficulty of measuring particle polydis-
persity Q) as to make useful application impossible. Until
improved measures of particle polydispersity are possible,
the Q correction heuristics first suggested by Thomas16

and furtherdeveloped in thispaperarenecessary foruseful
application of the conversion formulas.

From a purely theoretical viewpoint, the use of these
corrective heuristics cannot be defended and therefore
may be viewed with skepticism. However, from a practical
experimental viewpoint, the end results will show that
via use of the heuristics the conversion formulas provide
a systematic way of converting PCS and TEM measure-
ments to a common basis for comparison and evaluation.
Two points are worth noting. First, the heuristics were
developed for an independent data set36 from the literature
and were found to produce good results for our own data
sets for different types of particles (one of which is
presented in this paper). Second, through systematic use
of the heuristics, the conversion formulas produce number-
weighted results that closely match those obtained from
a proprietary approach (i.e., via the NICOMP instrument,
refs 37-39) that uses the same principles for data analysis.

As a final note, we are not advocating the modification
of any parameters that can be measured with reasonable
accuracy, such as the viscosity of the medium, in order to
bias the PCS results. Rather, we are attempting to develop
a systematic way of correcting the polydispersity obtained
from PCS (which is prone to experimental and analysis
error), so as to facilitate the comparison of two commonly
used measures of particle size. Improved PCS estimates
of polydispersity resulting from better experimental or
data analysis methods may obviate the need for the Q
correction heuristics developed in this paper, allowing the
conversion formulas to be applied directly.

Theoretical Development

Photon Correlation Spectroscopy. Homodyne
(single-beam) PCS experiments measure the intensity
ACF G(2), which can be fit with the following functional
form8

where A ) limτf∞ G(2)(τ) is the baseline constant of the
ACF, g(2) is the normalized intensity ACF, â is a correction
factor (of order one) related to the coherence area of the
photodetector, and f(Γ) is the intensity-weighted decay
constant distribution. The decay constant Γ is directly
related to the particle diffusion coefficient D0 by

where q ) (4πn/λ) sin(θ/2) is the scattering vector, n is the
solvent refractive index, θ is the scattering angle, and λ
is the laser wavelength in vacuum. The baseline constant
A can be determined from measured values of G(2) at long
delay times τ or can be treated as an additional fitting
parameter. However, the nonlinearity of the latter re-
gression makes this analysis rather complicated except
for the simplified cases of single- or double-exponential
fits.

(14) van Blaaderen, A.; Vrij, A. In The Colloid Chemistry of Silica;
Bergna, H. E., Ed.; ACS Symposium Series 234; American Chemical
Society: Washington, DC, 1994.

(15) Ketelson, H. A.; Pelton, R.; Brook, M. A. Langmuir 1996, 12 (5),
1134-1140.

(16) Thomas, J. C. J. Colloid Interface Sci. 1987, 117 (1), 187-192.
(17) Bogaert, H.; Douglas, P.; van der Meeren, P. J. Chem. Soc.,

Faraday Trans. 1992, 88 (23), 3467-3474.
(18) Bargeron, C. B. J. Chem. Phys. 1974, 61 (5), 2134-2138.
(19) Solution of the equations for KG1 and KG2 in eq 10 of ref 18 for

a0 ) µ and σa ) σ, where dPCS ) C/KG1 and Q ) KG2/KG1
2 , yields identical

results to those obtained in this paper for normal distributions.
(20) Horne, D. S. J. Colloid Interface Sci. 1984, 98 (2), 537-548.
(21) Taylor, T. W.; Scrivner, S. M.; Sorensen, C. M.; Merklin, J. F.

Appl. Opt. 1985, 24 (22), 3713-3717.
(22) For clarity, eqs 16 and 17 of ref contain typographical errors and

should read dn/dn ) (1 + σ2)n(n-1)/2 and d1/z
n ) dn(1 + σ2)n(n-1)/2,

respectively. Furthermore, ref 16’s σ2 is actually σ2/d2, since σ2 ) [N∑

dj
2 - (∑dj)2]/[N(N - 1)] simplifies to d2 - d2 for N . 1.

(23) Brehm, G. A.; Bloomfield, V. A. Macromolecules 1975, 8 (5), 663.

G(2)(τ)
A

- 1 ) g(2)(τ) - 1 ) â[∫0

∞
f(Γ) exp(-Γτ) dΓ]2 (2)

Γ ) q2D0 (3)
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Alternatively, G(2) data can be converted to electric field
ACF data g(1) prior to analysis using

Difficulties in measuring the baseline A complicate this
conversion. At large values of τ, noise sometimes produces
values of G(2) that are less than A, thus creating negative
numbers under the square root in eq 4. Removal of these

data points or setting xâg(1) ) 0 or - x1-g(2) when g(2)

< 1 remedies the problem but can bias the regression.3
We use Brookhaven’s approach26 and truncate the ACF
data set at the delay time of the first negative data point
τ-, thereby removing all of the data for τ g τ-. However,
it is not clear that this approach produces any less bias
than the methods mentioned above.

Method of Cumulants. The method of cumulants9 is
a PCS data analysis technique that circumvents the direct
inversion of eq 2. The method expands the natural log of
g(1) (eq 4) in a power series in delay time

known as the cumulant expansion. The constants Kj (j )
1, 2, ..., n) represent the jth order cumulants which are
related to the jth moments of f(Γ).9 The constant K0 is
related to xâ. Standard least squares fitting procedures
for polynomials24 can be used to regress Kj from measured
G(2) data according to eqs 4 and 5.

As described in ref 24, a polynomial regression can
account for the statistical significance of the data by
weighting the data points with their respective measure-
ment variance wj ) σj

-2, where wj is the weighting factor
and σj is the standard deviation of g(1) at the jth delay time
τj. Various methods18,25 have been used to estimate the
variance in ln[xâg(1)(τ)] in order to choose weighting
factors for the method of cumulants regressions. The
software accompanying our Brookhaven light-scattering
instrument26 uses wj ) [g(2)(τj) - 1]2 ) â2[g(1)(τj)]4, which,
in the context of the method of cumulants, is equivalent
to other weighting methods found in the literature.10,25

Calculation of g(1), selection of the regression weighting
factors wj, and truncation of the infinite series cumulant
expansion complicate the application of eq 5 for PCS data
analysis. These problems make it difficult to accurately
determine cumulants with orders higher than 2. In fact,
previous studies have shown27 that including additional
terms in the cumulant expansion can increase the errors
in K1 and K2. For this reason, most PCS applications of
the method of cumulants truncate eq 5 after three terms,
producing a quadratic cumulant (QC) expression (K0 -
K1τ + K2τ2/2).

For particles with narrow PSDs, the left-hand side of
eq 5, ln[xâg(1)(τ)], is a linear function of τ. Linear
regression produces the slope K1 ) - Γ ) - q2D0, and

substitution of D0 into eq 1 leads to dPCS. As the
polydispersity of the particles increases, a plot of ln
[xâg(1)(τ)] displays increasing curvature and nonzero
values of K2 are obtained. Values of K2, when suitably
normalized with K1

2 to give the suspension quality factor
or polydispersity index

provide a quantitative indication of the PSD width.
Figure 1 shows an example of weighted and unweighted

(wj ) 1) QC regressions of PCS data for a Stöber14,28 silica
suspension. dPCS and Q values of 193.2 nm and 9.6% and
181.2 nm and 14.3% were obtained from the weighted
and unweighted QC fits, respectively. From a data analysis
perspective, the weighted regression results are more
accurate and therefore are used in the discussion that
follows. TEM analysis29 of the particles (shown in the inset
of Figure 1) yielded a number-averaged diameter dTEM )
144.8 ( 35.9 nm. As Figure 1 shows, the QC expansion
fits the measured PCS data remarkably well despite the
width of the PSD (25% of the average diameter as
measured by TEM). Because the TEM PSD appears to be
nearly normal (i.e., Gaussian), the distribution has little
skewness or kurtosis (represented by K3 and K4 in eq 5),
so the higher-order cumulants are small and the QC
expression provides a good fit.

Despite the apparent quality of the PCS data in Figure
1, neither the average QC diameter (dPCS ) 193.2 nm) nor
the polydispersity index (Q ) 9.6%) compares well with
the TEM results. In an attempt to improve the agreement,
we averaged the results from QC fits of six independent
data sets (including the one shown in Figure 1). This
produced dPCS and Q values of 195.8 nm and 11.1%.
Although this level of polydispersity compares more

(24) Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W.
T. Numerical Recipes; Cambridge University Press: New York, 1988.

(25) Pusey, P. N.; Koppel, D. E.; Schaefer, D. W.; Camerini-Otero,
R. D.; Koenig, S. H. Biochemistry 1974, 13 (5), 952-960.

(26) Brookhaven Instruments Corporation’s Data Analysis Software
(BI-ISDA), version 6.5; Brookhaven Instruments Corporation (www-
.bic.com): Holtsville, New York, 1989.

(27) Brown, J. C.; Pusey, P. N.; Dietz, R. J. Chem. Phys. 1975, 62 (3),
1136-1144.

(28) Stöber, W.; Fink, A. E.; Bohn, E. J. Colloid Interface Sci. 1968,
26 (1), 62-69.

(29) A Hitachi model H-8000 electron microscope, an AMT 1024 ×
1024 digital Kodak camera system with version 1.55 software, and NIH’s
Image analysis software were used for the TEM analysis. The TEM
images were calibrated at each magnification using a 0.5 µm diffraction
grating coated with 261 nm polystyrene particles (Electron Microscopy
Sciences, #80055). The particles were used as the primary size standard,
and the lines of the grating, as a secondary standard. TEM analysis of
336 particles yielded a number-weighted diameter of 144.8 ( 35.9 based
on ellipsoid axes measurements. Area measurements based on a circular
cross section yielded equivalent results.

xG(2)(τ,θ)
A

- 1 ) xg(2)(τ,θ) - 1 ) xâg(1)(τ,θ) (4)

ln[xâg(1)(τ,θ)] ) K0 - K1τ +

K2τ2

2!
-

K3τ3

3!
+

K4τ4

4!
- ... +

Kn(-τ)n

n!
(5)

Figure 1. Weighted and unweighted quadratic cumulants fits
of ACF data collected at θ ) 90° for the Stöber14 silica particles
discussed in this paper (inset shows the number-weighted TEM
histogram of particle sizes29).

Q )
K2

K1
2

) Γ2 - Γ2

Γ2
(6)
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favorably with that from TEM, we find that Q can show
considerable variability from one experiment to another.
Furthermore, averaging over several experiments does
not improve the agreement between dPCS and dTEM. The
expressions developed in the next section provide a way
of determining how much of this discrepancy is due to the
difference between intensity- and number-weighted av-
eraging.

Number-WeightedPSDsfromPCSData: Rayleigh
Scatterers. Thomas16 outlines a procedure for generating
a number-weighted distribution f# from the values of Γ
and Q obtained from QC analysis of PCS data (or other
data analysis methods). The functional form of the
distribution f# must be specified. The intensity-weighted
mean decay constant is defined as

where f#j, Mj, and Pj are the number-weighted fraction,
mass, and form factor30-32 for particles with decay constant
Γj ∝ 1/dj. In the limit of small particles or small scattering
angle θ (i.e., the Rayleigh approximation30-32), P(Γj,θ) ≈
1, and eq 7 reduces to

which defines a z-average.13

For spherical particles with equal densities F, the square
of the particle mass varies with the sixth power of particle
diameter:

This result and eqs 1 and 3, written as

can be used to simplify eq 8, giving

The last equality defines the harmonic z-average13 (or 1/z
average) diameter

More generally, we can define16 the nth moment of the
harmonic z diameter

where d#
n is the nth moment about the origin of the

number-weighted diameter distribution f#. The quantity

d# ≡ d#
1 represents the number-average diameter as

calculated from PCS data. Using x to represent d to avoid
confusion in notation, the nth moment of f# is defined as

where the lower limit a depends on the range of f# and
equals -∞ for the normal and Schultz-Zimm distributions
and 0 for the log-normal distribution. As a check,

normalized distribution functions should produce x0 ) 1.

The values of dPCS and Q obtained from QC analysis of
PCS data can be expressed in terms of the moments of f#.
Since Γ ) C2/dPCS, eqs 8, 11, and 12 indicate that

and

assuming that the particles are Rayleigh scatterers or
alternatively in the limit as θ approaches 0.33

Expressions for the mean µ ( ) d#) and standard
deviation σ of number-weighted distributions f# of specified
functional form can be determined by solving eqs 15 and

16 for µ and σ. This first requires evaluation of d#
n for n

) 4, 5, and 6 for the specified distribution function. Table
1 gives the functional forms of the normal, log-normal,
and Schultz-Zimm distributions evaluated in this paper.
Figure 2 compares these distributions for one value of µ
and two values of σ to illustrate the differences between
the distributions as a function of increasing distribution
width.

Rayleigh-Debye-Gans Scatterers. According to
Rayleigh-Debye-Gans (RDG) theory,30-32 the single-
particle form factor for nonadsorbing, spherical particles

(30) van de Hulst, H. C. Light Scattering by Small Particles; Wiley:
New York, 1957.

(31) Kerker, M. The Scattering of Light, and Other Electromagnetic
Radiation; Academic Press: New York, 1969.

(32) Bohren, C. F.; Huffman, D. R. Adsorption and Scattering of Light
by Small Particles; Wiley: New York, 1983; pp 25-28.

(33) Pusey, P. N.; van Megen, W. J. Chem. Phys. 1984, 80 (8), 3513-
3520.

Γ ) ∑f#jMj
2Pj(Γj,θ)Γj

∑f#jMj
2Pj(Γj,θ)

(7)

Γ ≈ ∑f#jMj
2Γj

∑f#jMj
2

) Γz (8)

Mj
2 ) F2Vj

2 ) (Fπ
6 )2

dj
6 ) C1dj

6 (9)

Γj )
q2kBT
3πηdj

) [4πn
λ

sin(θ2)]2 kBT
3πηdj

)
C2

dj
(10)

Γz )
C1C2∑f#jdj

6/dj

C1∑f#jdj
6

)
C2∑f#jdj

5

∑f#jdj
6

) C2(1d)z
)

C2

d1/z

(11)

d1/z ) ∑f#jdj
6

∑f#jdj
5

)
d#

6

d#
5

(12)

d1/z
n ) ∑f#jdj

6

∑f#jdj
6-n

)
d#

6

d#
6-n

(13)

xn ) ∫a

∞
f#(x)xn dx (14)

dPCS )
C2

Γz

) d1/z )
d#

6

d#
5

(15)

Q )
Γz

2 - Γz
2

Γz
2

)
Γz

2

Γz
2

- 1 )
C2d1/z

2

C2d1/z
2

- 1 )

d1/z
2

d1/z
2

- 1 )
(d#

6/d#
5)2

d#
6/d#

4
- 1 (16)

)
(d#

6)(d#
4)

(d#
5)2

- 1

3094 Langmuir, Vol. 15, No. 9, 1999 Hanus and Ploehn



of radius R is

RDG theory requires

so that the incident light has uniform magnitude and phase
within each particle.32 If these conditions are not met,
then the form factor must be calculated using a more
complicated scattering theory such as Mie theory,32 which
is general for spheres.

Taylor series expansion of the sine and cosine terms in
eq 17, algebraic manipulation, and recognition of the
Taylor series expansion for the exponential leads to

the Guinier34 approximation of eq 17. Figure 3 compares
the form factors calculated using eqs 17 and 18. Form
factors from eqs 17 and 18 differ by less than 5% for particle
diameters less than x, where x ) 465, 170, and 125 nm
for scattering angles of 30, 90, and 150°, respectively.

If we explicitly include the form factor in the derivation
leading to eqs 15 and 16, we find

and

Using eq 18 for P, the required moments can be evaluated
to express dPCS and Q in terms of µ ( ) d#) and σ of a
normal, number-weighted PSD f#.

Results and Discussion
Rayleigh ScattererssAverage Diameters. We used

Maple V Release 4 to evaluate the fourth-, fifth-, and sixth-
order moments of the distributions in Table 1 and to solve
for the parameters (µ and σ) of the number-weighted
distributions using eqs 15 and 16. The expressions
obtained for normal, log-normal, and Schultz-Zimm
distributions are summarized in Table 2. The real root of
the polynomial expression derived for the normal distri-
bution can be evaluated using the Newton-Raphson
method24 (e.g., via the RTSAFE FORTRAN subroutine in
ref 24). Alternatively, the simple series approximation
shown in Table 2 can be applied accurately for Q < 0.07.

Figure 4 shows the ratio of number-average (d#) and
intensity-average (dPCS) particle diameters as a function
of Q for the various distributions and the experimental
ratio measured using a NICOMP PCS instrument,37-39

which employs a proprietary conversion algorithm. For
measured values of dPCS and Q, multiplication of dPCS by
the corresponding correction factor from Figure 4 gives
the PCS-based number-average particle diameter µ ) d#
for a selected functional form of the distribution. The
correction factors in Figure 5 are less than unity, indicating(34) Guinier, A. Ann. Phys. (Leipzig) 1939, 12, 161.

Table 1. Distribution Functions Evaluated in This Papera

distribution f#(x)

normal (Gaussian)
exp[-(x - µ)2/2σ2]

x2πσ2

log-normal16,43
exp[-{ln(x) - µLN}2/2σLN

2 ]

xx2πσLN
2

where µLN ) ln(µ) - σLN
2 /2 and σLN

2 ) ln[1 + (σ/µ)2]

Schultz-Zimm20,21,44,45 [x(z + 1)
µ ]z+1 exp[-x(z + 1)/µ]

xΓ(z + 1)
) [xµ

σ2]µ2/σ2 exp[-xµ/σ2]

xΓ(µ2/σ2)
where z ) µ2/σ2 - 1

a x ≡ d#, µ ) d#, σ2 ) d#
2 - d#

2 ) ∫(x - µ)2f(x) dx ) variance of the number distribution, and Γ ) the gamma function24.

Figure 2. Comparison of the normal, log-normal, and
Schultz-Zimm distributions.

P(q,R) )
9πJ3/2

2 (qR)

2(qR)3
) 9[sin(qR) - qR cos(qR)

(qR)3 ]2
(17)

|npart

n
- 1| , 1 and

2πnd#

λ
|npart

n
- 1| , 1

P(q,R) ) exp(-0.2q2R2) ) exp(-0.05q2d#
2) (18)

dPCS )
Pd#

6

Pd#
5

(19)

Figure 3. Comparison of the RDG form factor and the Guinier
approximation exp(-0.05q2d#

2) as a function of particle size in
water at 20 °C for three different scattering angles (30, 90, and
150°).

Q )
(Pd#

6)(Pd#
4)

(Pd#
5)2

- 1 (20)
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that d# is always less than dPCS, at least for the three
distributions considered here. For low values of Q, the
correction factor d#/dPCS becomes independent of the
functional form of the distribution.35 As Q increases, the

assumed form of the distribution has a strong effect on
d#/dPCS: the disparity between d# and dPCS is greater for
the normal distribution than for the Schultz-Zimm or
log-normal distribution. Figure 4 also shows that the
correction factor for the Schultz-Zimm distribution
approaches zero and is therefore invalid for Q > 25%.

Thomas16 compares values of dTEM (the TEM-based
number-average diameter) with values of d# derived from
PCS data (published by Douglas et al.36) for several
suspensions of poly(butyl-2-cyanoacrylate) and polysty-
rene latex particles (with unknown PSD forms). Table 3
shows the conversion of the measured values of dPCS and

(35) The work of Krieger, I. M. (J. Macromol. Sci., Phys. 1970, B4
(2), 437-440) helps to explain this observation. For narrow distributions
(σ/µ , 1), the distribution moments equal

d#
n ≈ µn[1 +

n(n - 1)
2 (σµ)2]

and eqs 15 and 16 yield

dPCS ≈ µ[1 + 5(σµ)2
- 50(σµ)4

+ ...]
and

Q ≈ (σµ)2
- 30(σµ)4

+ ...

Thus, for σ/µ , 1,

µ

dPCS

≈ 1 - 5Q

which explains the converging linear behavior of the different types of
distributions as Q decreases. This relation for dPCS also follows from the
expression of (1) Bargeron (ref 18) for normal distributions assuming
a truncated RDG expression for spheres for σ/µ , 1 (i.e., his equation
13) in the limit as q approaches 0 and (2) Pusey and van Megen (ref 33)
for Schultz-Zimm distributions using the full RDG expression for
spheres (i.e., their equation 19) in the limit as q approaches 0.

Table 2. General Expressions for Converting the Intensity-Average Particle Diameter dPCS and the Polydispersity Index
Q to the Mean µ and Standard Deviation σ of Various Number-Weighted Particle Size Distributions

distribution formulas for number-weighted mean µ and standard deviation σ

normal (Gaussian)

µ ) real root of {25(1 + Q)3y5 - 75(1 + Q)2y4 + 5(19 + 29Q + 10Q2)y3 -
3(21 + 20Q)y2 + 3(7 + 5Q)y - 3 }dPCS

≈ [1 - 5(Q - 3Q2 - 25Q3 - 163Q4 - 849Q5) + O(Q6)]dPCS for Q < 0.07

and σ ) dPCSx1 - µ/dPCS

5(1 + Q)

log-normal µ )
dPCS

(1 + Q)5
and σ ) µxQ

Schultz-Zimm µ ) dPCS(1 - 4Q
1 + Q ) and σ ) dPCS

xQ(1 - 4Q)
1 + Q

y ) d#/dPCS

Figure 4. Ratio of the intensity-weighted diameter dPCS to the
number-weighted diameter d# for normal (N), log-normal
(LN), and Schultz-Zimm (SZ) distributions as functions of the
polydispersity index Q. The cross (+) data are the experimen-
tally measured ratio obtained from the NICOMP instrument.
The inset shows a magnified view for small Q.

Table 3. Conversion of Intensity-Weighted Average
Particle Diameters from PCS (As Measured by Thomas,
ref 16) to Number-Weighted Average Particle Diameters

for Various Forms of the Distribution Functiona

quadratic
cumulants TEM log-normal Normal Schultz-Zimm

dPCS QPCS (%) Qcalc (%) dTEM d# %∆b d# %∆b d# %∆b (%)

Using Qcalc ) QPCS
469 3.3 3.3 450 399 -11.2 383 -15.0 395 -12.2
180 3.7 3.7 166 150 -9.4 142 -14.4 148 -10.7
417 4.4 4.4 390 336 -13.8 307 -21.2 329 -15.6
203 7.9 7.9 165 139 -16.0 93 -43.6 129 -22.1
160 10.3 10.3 122 98 -19.8 61 -50.4 85 -30.2
159 15.0 15.0 130 79 -39.2 50 -61.7 55 -57.5

Using Thomas’ Heuristic Qcalc ) QPCS - 0.03
469 3.3 0.3 450 463 2.9 463 2.9 463 2.9
180 3.7 0.7 166 174 5.0 174 4.8 174 4.9
417 4.4 1.4 390 389 -0.3 386 -0.9 388 -0.5
203 7.9 4.9 165 160 -3.2 142 -14.1 155 -5.8
160 10.3 7.3 122 112 -7.9 79 -34.9 105 -13.6
159 15.0 12.0 130 90 -30.6 55 -57.4 74 -43.3

Using the Heuristic Qcalc ) QPCS/2.556
469 3.3 1.3 450 440 -2.2 438 -2.7 439 -2.3
180 3.7 1.4 166 168 1.0 167 0.3 167 0.8
417 4.4 1.7 390 383 -1.8 379 -2.8 382 -2.1
203 7.9 3.1 165 174 5.6 168 1.6 172 4.5
160 10.3 4.0 122 131 7.6 122 0.0 129 5.7
159 15.0 5.9 130 120 -8.1 98 -24.6 115 -11.6

Using the Heuristics Qcalc ) QPCS/2.556, QPCS/2.071, and
QPCS/1.871 for the Normal, Schultz-Zimm, and Log-Normal

PSD Conversions, Respectively
469 3.3 varies 450 430 -4.4 438 -2.7 433 -3.9
180 3.7 varies 166 163 -1.6 167 0.3 164 -1.0
417 4.4 varies 390 371 -4.8 379 -2.8 374 -4.2
203 7.9 varies 165 165 0.0 168 1.6 166 0.4
160 10.3 varies 122 122 0.2 122 0.0 122 0.0
159 15.0 varies 130 108 -16.8 98 -24.6 105 -19.0

a The data are presented in order of increasing values of the
measured polydispersity index Q. b %∆ ) 100(dTEM - d#)/dTEM.
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QPCS (the data of Douglas et al.36) to d# through the use
of the expressions given in Table 2. In addition, Table 3
compares values of number-average diameters from PCS
(d#) and TEM (dTEM).

The first part of Table 3 shows conversions of dPCS to
d# with calculations employing values of the polydisper-
sity index Qcalc equal to the measured values QPCS. The
standard deviations were not computed because the
corresponding TEM-based values were not available. As
expected, the values of d# are less than dPCS and closer to
dTEM. However, for all values of QPCS, the values of d# are
significantly less than dTEM. The remaining differences
between d# and dTEM could be due to experimental
artifacts (e.g., particle shrinkage under the electron beam
or noise in the PCS data), approximations in the data
analysis method (e.g., inadequate TEM statistics or
quadratic cumulants analysis), or approximations in the
derivation of the conversion formula (e.g., assuming
Rayleigh scattering or presuming the form of the distri-
bution).

Here, we explore Thomas’ hypothesis16 that noise in
the PCS data leads to measured values of the polydis-
persity index QPCS that are too high. On the basis of an
estimate36 that a suspension of monodisperse particles
would yield QPCS ≈ 0.03, Thomas proposes the use of an
adjusted polydispersity index Qcalc ) QPCS - 0.03 in the
calculations for converting dPCS to d#. The second part of
Table 3 shows conversions using the Thomas heuristic. In
general, the results show that the Thomas heuristic
improves the agreement between d# and dTEM. As QPCS

increases, though, the difference between d# and dTEM
grows. The difference becomes large for relatively low
values of QPCS, regardless of the assumed form of the
distribution.

To generate estimates of Qcalc that lead to better
agreement between d# and dTEM, we propose a heuristic
correction of the form Qcalc ) QPCS/C. An optimal value of
the constant C minimizes the difference between dTEM

and d#. For example, we obtain Qcalc ) QPCS/2.556 by
minimizing |dTEM - d#| for all of the suspensions in Table
3 (except dTEM ) 159 nm), assuming a normal distribu-
tion. The third part of Table 3 shows the results found
using this heuristic. For measured values of QPCS < 15%,
this heuristic leads to PCS-based estimates of d# that
differ from dTEM by less than 8%, regardless of the
assumed form of the distribution. For the largest QPCS

value, 15%, the percentage difference between d# and
dTEM is much less than that found using Thomas’ heu-
ristic.

Similarly, the value of C can be optimized separately
for each assumed form of the distribution, leading to Qcalc
) QPCS/2.556, QPCS/2.071, and QPCS/1.871 for the normal,
Schultz-Zimm, and log-normal distributions, respec-
tively. Figure 5 shows the effect of the different C values
for the different PSD forms on d#/dPCS. For QC ) QPCS <
15%, d#/dPCS is nearly identical for all of the assumed
PSD forms considered. This result logically follows from
the way that the corrective factors were derived: by
minimizing the difference between the converted results
and TEM results for the data in Table 3 (from ref 36), all
with unknown PSD forms and QPCS < 15%. Thus, via use

of the corrective factors, the assumed PSD form does not
have a significant effect on the conversion results in this
polydispersity range.

The fourth part of Table 3 employs these heuristic
formulas. We see that the difference between d# and dTEM
decreases to less than 5% for all forms of the distribution
as long as QPCS < 15%. However, the more specialized
heuristics lead to greater disparity between d# and dTEM
for the suspension with QPCS ) 15%. A better way of
determining the heuristic corrective factors C would be
to minimize the difference between TEM and converted
PCS results for a PSD of known distribution form using
the appropriate conversion expression for that particular
distribution form.

Rayleigh ScattererssPSDs. In Figures 6-8, we
compare TEM-measured and PCS-based PSDs for the
Stöber14 silica suspension discussed earlier (Figure 1). In
these figures, the TEM-measured PSD is a number-
weighted distribution based on measurements of particle
diameters in TEM images.29 The NICOMP results are
number-weighted distributions obtained from that com-
mercial PCS instrument.37-39 The NICOMP results pre-
sented are the average of the results obtained from six
different data sets. The other PSDs were generated from
PCS data obtained using a Brookhaven light-scattering

(36) Douglas, S. J.; Illum, L.; Davis, S. S.; Kreuter, J. J. Colloid
Interface Sci. 1984, 101, 149.

Figure 5. Effect of the heuristic corrective factor C on the
ratio of the intensity-weighted diameter dPCS to the number-
weighted diameter d# for normal (N), log-normal (LN), and
Schultz-Zimm (SZ) distributions as functions of the polydis-
persity index QC. The inset shows a magnified view for small
QC.

Figure 6. Comparison of the PSDs obtained from TEM
measurements and PCS quadratic cumulants analysis con-
verted to normal (N), log-normal (LN), and Schultz-Zimm
(SZ) number-weighted distributions for the Stöber14 silica
particles discussed in this paper using the Q correction heuristic
Qcalc ) QPCS - 0.03.
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instrument40 and analyzed with QC. The QC-determined
values of dPCS (195.8 nm) and QPCS (11.1%) were con-
verted to number-weighted normal (N), log-normal (LN),
and Schultz-Zimm (SZ) distributions using the expres-
sions given in Table 2.

The PCS-based distributions in Figure 6 employ Tho-
mas’ heuristic Qcalc ) QPCS - 0.03. The NICOMP distribu-

tion (d# ) 166.0 ( 31.6 nm) overestimates dTEM by 14.6%
and underestimates the breadth of the PSD. The N, LN,
and SZ distributions better represent the actual breadth
of the distribution, and they predict d# ) 106.5 ( 66.3 (N),
132.6 ( 37.8 (LN), and 122.4 ( 42.4 nm (SZ), values that
are 26.5%, 8.5%, and 15.4% lower than dTEM.

Better agreement can be achieved by using the heuristic
correction formulas proposed in the previous section. We
emphasize that these formulas were optimized earlier
using previously published data,36 so the predictions
involve no adjustable parameters. Figure 7 uses the
heuristic Qcalc ) QPCS/2.556 for all assumed forms of the
distribution. The estimated values of d# (145.0 ( 43.6,
158.3 ( 33.0, and 155.1 ( 35.5 nm for the N, LN, and SZ
distributions, respectively) differ by 0.2%, 9.3%, and 7.1%
from dTEM. Figure 8 uses the specialized heuristics Qcalc
) QPCS/2.556, QPCS/2.071, and QPCS/1.871 for the N, SZ,
and LN distributions, respectively. For the LN and SZ
distributions, these produce d# values of 146.8 ( 35.8 and
146.0 ( 38.1 nm, respectively, which differ from dTEM by
1.4% and 0.8%. In this case, the specialized heuristics
lead to better agreement between d# and dTEM. Although
none of the assumed PSD forms can describe the exact
details of the silica suspension’s PSD, the averages and
breadths of the PSDs are reasonably close to those of the
TEM-measured PSD.

Rayleigh-Debye-Gans Scatterers. Assuming a
normal distribution for f#, substitution of eq 18 into eqs
19 and 20 and evaluation of the moments produces

and

in terms of the mean µ and standard deviation σ of the
normal distribution. Similar expressions for the log-
normal and Schultz-Zimm distributions are not presented
because the required integrals ∫a

∞ P(x) f#(x)xn dx for n )
4, 5, and 6 could not be evaluated explicitly using Maple
V. However, Pusey and van Megen33 present a solution
for Schultz-Zimm distributions with P(x) defined by eq
17. Using their approach, we were able to evaluate the
necessary integrals using Fourier sin and cos transforms
in Maple V and to confirm the results using integral and
Fourier transform tables.41 The derived expressions agree
exactly with those in ref 33 if Γ(x + 1) is used instead of
x!.

The complexity of eqs 21 and 22 makes it difficult to
solve them for µ and σ as explicit functions of dPCS and Q.
Nevertheless, we can still use these expressions to predict
values of dPCS and Q from the mean and variance of a
TEM-measured PSD. For the TEM PSD shown in Figure

(37) Particle Sizing Systems’ NICOMP model 370 with version 12.3
software; Particle Sizing Systems (www.pss.nicomp.com): Santa Bar-
bara, CA.

(38) Nicoli, D. F.; Elings, V. B. In NASA Laser Light Scattering
Advanced Technology Development Workshops1988; Meyer, W. V., Ed.;
NASA Conference Publication 10033; NASA: Cleveland, OH, 1989.

(39) Nicoli, D. F. InPhoton Correlation Spectroscopy: Multicomponent
Systems; Schmitz, K. S., Ed.; SPIE Proceedings Series 1430; SPIE:
Bellingham, WA, 1991.

(40) Brookhaven Instruments Laser Light Scattering System con-
sisting of BI-200SM goniometer, a BI-9000 digital correlator, version
6.5 software, and a Lexel 95A argon ion laser; Brookhaven Instruments
Corporation (www.bic.com): Holtsville, NY, 1993. This instrument was
operated at the laser wavelength 514 nm and the scattering angle 90°.

(41) CRC Standard Mathematical Tables and Formulae, 29th ed.;
Beyer, W. H., Ed.; CRC Press: Boston, 1981.

(42) Wu, C. Colloid Polym. Sci. 1993, 271, 947-951.
(43) Yan, Y. D.; Clarke, J. H. R. Adv. Colloid Interface Sci. 1989, 29,

277-318.
(44) Sheu, E. Y. Phys. Rev. A 1992, 45 (4), 2428-2438.
(45) The Schultz-Zimm (SZ) distributions presented in refs 21 and

43 reduce to the SZ distribution listed in Table 1 for σ2 ) σ2/µ2.

Figure 7. Comparison of the PSDs obtained from TEM
measurements and PCS quadratic cumulants analysis con-
verted to normal (N), log-normal (LN), and Schultz-Zimm
(SZ) number-weighted distributions for the Stöber14 silica
particles discussed in this paper using the Q correction heuristic
Qcalc ) QPCS/2.556.

Figure 8. Comparison of the PSDs obtained from TEM
measurements and PCS quadratic cumulants analysis con-
verted to normal (N), log-normal (LN), and Schultz-Zimm
(SZ) number-weighted distributions for the Stöber14 silica
particles discussed in this paper. The Q correction heuristics
Qcalc ) QPCS/2.556, QPCS/2.071, and QPCS/1.871 are used for the
N, SZ, and LN PSD conversions, respectively.

dPCS )

q2[q4σ10 + 30q2σ6(µ2 + σ2) + 100µ2σ2(µ2 + 6σ2) + 300σ6] +
200µ6/3σ2 + 1000(µ4 + σ4) + 3000µ2σ2

µ(10 + q2σ2)[q2σ4(20 + q2σ2) + 20µ2(10 + q2σ2 + µ2/σ2)/3 + 100σ2]
(21)

Q )

0.02σ2{q2σ4[9q6σ12(q2σ2 + 50) + 300q4σ6(2µ4 + 30σ4) +
400q2σ2(225σ6 + 45µ4σ2 + 4µ6) +
2000(µ8/σ2 + 16µ6 + 90µ4σ2 + 225σ6) ] +

20000(µ8 + 30µ4σ4 + 8µ6σ2 + 45σ8)
}

µ2[q2σ4(3q2σ4 + 60σ2 + 20µ2) + 10(2µ4 + 20µ2σ2 + 30σ4)]2

(22)
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6, substitution of µ ) 144.8 nm and σ ) 35.9 nm into eqs
21 and 22 with q ) (4πn/λ) sin(θ/2) ) (4π1.33299/514.5)
sin(90/2) ≈ 0.02302 produces dPCS ) 171.9 nm and QPCS

) 2.556Qcalc ) 9.5%. This value of dPCS is 12% lower than
that actually measured by PCS (195.8 nm) for this
suspension. If, instead, we substitute µ ) 144.8 nm and
σ ) 35.9 nm into eqs 15 and 16 (assuming Rayleigh
scattering and a normal distribution), we find dPCS )
181.5 nm and QPCS ) 8.9%. Although this value of dPCS
is still 7% too low, it is a better estimate than that obtained
using eqs 21 and 22, which assume RDG scattering. These
observations suggest that heuristic formulas for correcting
Q do more than account for noise: they must also correct
for inaccuracies introduced by the assumptions in the data
analysis methods and conversion formulas.

Equations 19 and 20 for dPCS and Q plus the complete
RDG form factor, eq 17, can be evaluated using numerical

integration of the moments Pd#
n. Using Maple V, these

calculations take about 10 min to complete on a 233 MHz
Intel Pentium II computer. For the silica suspension shown
in Figure 6, the resulting values of dPCS and Q differed by
less than 1% from the values obtained from eqs 21 and
22. This similarity is expected: Figure 3 indicates that eq
18 is an accurate approximation for eq 17 for θ ) 90° and
d# < 170 nm. Similar calculations were attempted for
log-normal and Schultz-Zimm distributions, but dPCS
and Q could not be evaluated directly using Maple V.
However, the results obtained numerically for normal
distributions may be compared with the analytical solution
for Schultz-Zimm distributions in ref 33.

Intensity-Average Diameters from TEM Data. In
theory, we should be able to estimate the intensity-average
diameter from TEM data using eq 7 (with eqs 1 and 3)
without assuming any particular PSD form. Starting with
the TEM PSD shown in Figure 6, use of eq 7 with form
factors from Rayleigh (P ) 1), RDG (eq 17), and Mie32

theory produces intensity-average diameters of 180.2 (
34.3, 183.1 ( 12.4, and 170.9 ( 16.7 nm, respectively.
These values are as much as 13% lower than the value
actually measured by PCS (195.8 nm).

The difference between the averages could be a result
of an overestimation of the PCS diameter due to noise in
the measured intensity ACF. This could explain earlier
observations36 that even suspensions with nearly mono-
disperse particles show significant polydispersity. To
explore this hypothesis, let us again consider the silica
suspension with the TEM PSD given in Figure 6. In the
previous section, we found that eqs 15 and 16 (assuming
a normal distribution and Rayleigh scattering) produced
dPCS ) 181.5 nm and QPCS ) 8.9%. If we account for the
effect of noise by arbitrarily increasing the TEM standard
deviation (from σ ) 35.9 nm, holding µ ) 144.8 nm
constant) until the calculated value of QPCS matches the
measured value of 11.1%, the calculated value of dPCS
becomes 195.5 nm, essentially identical to the measured
value. This suggests that QC analysis of PCS data may
overestimate the actual polydispersity of the PSD, perhaps
due to signal noise, as suggested by Thomas.16 Alternately,
the TEM PSD may not be accurate: inclusion of a few
more large particles in the PSD would increase the
variance as well as dTEM, both leading to higher values of
dPCS. Further comparisons of PCS and TEM data are
needed to properly address this issue.

Conclusions
The primary results of this work are the intensity to

number-weighting (Table 2) and number to intensity-
weighting (eqs 21 and 22) conversion formulas. The
formulas in Table 2 have been presented previously in
the literature (directly for log-normal16,17 PSDs and in
various forms for normal18 and Schultz-Zimm21 PSDs).
To our knowledge, eqs 21 and 22 for normal PSDs have
not been derived previously (although Pusey and van
Megen33 have derived similar expressions for Schultz-
Zimm PSDs).

Analysis of earlier applications16 of the log-normal
conversion formula (Table 2) suggested that consistently
reasonable agreement between d# and dTEM is not pos-
sible without improved prediction of particle polydispersity
by PCS. Thus, to facilitate useful application of the
conversion formulas, we developed Q correction heuristics
(based on the suggestion of Thomas16) that produce better
agreement between d# and dTEM for wider ranges of
particle polydispersity and for various assumed PSD
forms. After optimizing a numerical factor in these
heuristics using previously published data,36 we find good
agreement between converted PCS and measured TEM
PSDs for a Stöber silica suspension. The conversion results
also agree closely with the results from a NICOMP PCS
instrument which employs a proprietary conversion
algorithm based on the same data analysis principles. We
also find that, for polydispersities less than 15%, d#/dPCS
values obtained from the conversion formulas for the
different assumed PSD forms essentially converge (Figure
5) when our Q correction heuristics are used. This means
that the assumed PSD form essentially does not matter
when our Q correction heuristics are used with the
conversion formulas in this polydispersity range. This
observation is consistent with the convergence of the PSD
forms with decreasing polydispersity (Figures 2 and 4 and
ref 35) and has been confirmed in the analysis of PCS and
TEM data for several silica and polystyrene suspensions
studied in our lab (the subject of subsequent papers).

Better estimates of Q would make the use of the
correction heuristics unnecessary. To this end, we have
explored different experimental conditions (e.g., measure-
ment at multiple angles and different temperatures) and
alternative data analysis techniques. For example, the
extrapolation techniques of Beretta et al.11 (extrapolation
to zero analysis error), Brehm and Bloomfield23 (extrapo-
lation to zero q), and Brown et al.27 (extrapolation to zero
Γτmax) for improved QC parameter prediction have all
been explored. Additionally, the analysis approach sug-
gested by Wu42 was investigated. None of these methods
produced improved results consistently for any of several
silica and polystyrene data sets investigated. However, if
improved methods of predicting PCS parameters are
developed (via either experimental or data analysis
enhancements), then the conversion formulas presented
in this paper can be easily be applied and evaluated
without the use of the Q correction heuristics.

The primary limitations of the conversion formulas
developed in this paper are (1) the need for correction of
the PCS-measured Q value and (2) knowledge of (or
assumption of) a uniform PSD form for the suspension
being studied. The first limitation was addressed in the
previous paragraph. The second limitation means that
the conversion formulas are unable to resolve complex or
multimodal PSDs. However, for uniform PSDs with
polydispersities less than 15%, the conversion formulas
produce good results regardless of the conversion formula
used (i.e., the PSD form assumed). For larger polydis-
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persities, a priori knowledge of the PSD form leads to the
best conversion results. However, the formulas have
produced reasonable predictions (not shown in this paper)
of average particle size in these cases and even for
multimodal PSDs regardless of the conversion formula
used. These results appear in subsequent papers (already
submitted for publication) dealing with the analysis of
silica and polystyrene suspensions.

The most practical benefit of the conversion formulas
is that they allow us to convert PCS and TEM measures
of particle size to a common averaging basis. This allows
us to address the importance of the other possible
contributions (already mentioned in this paper) to the
difference between dPCS and dTEM, and perhaps to answer
the question of whether PCS and TEM measures of particle
size can be compared at all. This being said, the implica-
tions of the light-scattering assumptions and Q correction
heuristicsusedtoderiveandapply theconversion formulas
must be explored before firm conclusions can be drawn.
This will require a critical assessment of the conversion
results for suspensions of different particle types and sizes
with different PSD features.

For example, the heuristic correction formulas were
developed using expressions (Table 2) based on Rayleigh
scattering theory. When the heuristic formulas are used
with conversion expressions (eqs 21 and 22) based on RDG

scattering theory, the difference between d# and dTEM
increases. This suggests that the heuristic corrections also
account, at least in part, for inaccuracies introduced by
approximations in the development of the conversion
formulas and, possibly, the choice of data analysis method.
The impact of PCS measurement noise on the difference
between d# and dTEM (the rationale behind the Q correc-
tion heuristics) is another issue that needs to be inves-
tigated further. Conversion of a TEM PSD into the
intensity-average diameter, either rigorously through eq
7 or assuming a PSD form through eqs 15 and 16 or the
expressions in Table 2, produces similar underestimates
of dPCS. Increasing the standard deviation in the TEM
PSD to account for the effect of noise leads to better
agreement between estimated and measured values of
dPCS. We continue this critical assessment of the con-
version formulas and Q correction heuristics in the papers
dealing with the conversion results for silica and poly-
styrene suspensions.
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