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We compare results for the number-weighted mean radius and polydispersity obtained either by directly
fitting number distributions to dynamic light-scattering data or by converting results obtained by fitting
intensity-weighted distributions. We find that results from fits using number distributions are angle
independent and that converting intensity-weighted distributions is not always reliable, especially when
the polydispersity of the sample is large. We compare the results of fitting symmetric and asymmetric
distributions, as represented by Gaussian and Schulz distributions, respectively, to data for extruded
vesicles and find that the Schulz distribution provides a better estimate of the size distribution for these
samples. © 2006 Optical Society of America
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1. Introduction

Dynamic light-scattering (DLS) techniques are fre-
quently used to estimate particle-size distribu-
tions.1,2 In these measurements the intensity of light
scattered from a particle dispersion is detected and
the intensity–intensity autocorrelation function of
the light is calculated. In most cases this is related to
the field–field autocorrelation function. For monodis-
perse particle dispersions, the field–field autocorre-
lation function decays exponentially with a decay
rate proportional to the diffusion coefficient of the
particles. If the sample is polydisperse, the field–field
correlation function consists of a distribution of decay
rates. In this case the correlation function data are
usually analyzed in terms of the moments or cumu-
lants of the decay rate distribution.3,4 Alternatively,
the decay rate distribution is determined by direct
numerical inversion of DLS data by using a regular-
ized Laplace inversion such as Contin.5,6 The mean
and standard deviation of the decay rate distribution
can be determined by either method, from which the

hydrodynamic radius and relative standard deviation
are calculated.

Because the scattered intensity is weighted by both
the mass and the form factor of the scattering objects,
the hydrodynamic radius determined by these tech-
niques can depend on the angle at which the scat-
tered intensity is measured. This effect is significant
for larger, more polydisperse particles. To overcome
this problem, we must determine the number-
weighted distribution, which is scattering-angle in-
dependent.

One example of particles that are frequently inves-
tigated using light scattering are extruded vesicles.
Studies reveal them to be a prototypical example of
polydisperse, spherical particles. The size distribu-
tion of the extruded vesicles has been characterized
by different methods such as freeze-fracture electron
microscopy,7,8 cryogenic transmission electron mi-
croscopy,9,10 field flow fractionation,11 and static light
scattering.12,13 In particular, DLS has been used ex-
tensively because sample preparation is simple, the
measurement is noninvasive, and the measurement
time is relatively short compared with other methods,
including static light scattering.14–18 Detailed studies
show that vesicles range in size from tens to hun-
dreds of nanometers, depending on the size of the
polycarbonate membrane filters and the pressure
used during extrusion, and that they have polydis-
persities of 20%–30%.7,19 If they are made in pure
water, they are also spherical.8

There are a few groups that directly determine
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number-weighted distributions of extruded vesicles.
A number-weighted distribution of arbitrary func-
tionality can be obtained by using discrete Laplace
inversion algorithms.20 Alternatively, number-
weighted distributions have been determined by mul-
tiangle DLS measurements;21 this requires long
measurement times, especially when large vesicles
and small angles are involved.

A more common approach is to attempt to convert
the results of either cumulants analysis or an
intensity-weighted distribution to a number-
weighted radius distribution. Results from cumu-
lants analysis have been converted to number
distributions that have the form of a log-normal dis-
tribution,22,23 a Gaussian or normal distribution,24 a
Schulz distribution,22,25,26 or even an arbitrary distri-
bution function.27 These methods are based on the
assumption that particles are small such that the
form factor is equal to 1. In fact, this assumption is
not valid in many measurements involving large par-
ticles. The form factor can be included in the conver-
sion of intensity-weighted distributions to number
distributions.28

In these studies we investigate the determination
of number-weighted mean radius and polydispersity
from DLS data by using nonlinear least-squares fit-
ting methods to directly fit the distribution to the
data. DLS measurements of the light scattered by
extruded vesicles were made over a wide range of
scattering angles. Various distributions were fit to
the data, and the scattering-angle dependence and
robustness of the results were compared. In particu-
lar, two functional forms for the vesicle radius distri-
bution, Gaussian and Schulz, were investigated to
show the effect of the symmetry of the distribution on
the results. The results for the mean radius and the
polydispersity obtained by direct fitting of a number-
distribution to the data were compared with the
results calculated from the determination of the
intensity-weighted radius distribution.

2. Radius Distributions by Dynamic Light Scattering

A. Types of Distributions

Gaussian and Schulz distributions are used in these
studies to represent symmetric and asymmetric dis-
tributions, respectively. The Gaussian distribution is
written as

G�R� � � 1

�2�s�exp���R�� R�2

2s2 �, (1)

where R� and s are the mean radius and standard
deviation, respectively. We define polydispersity as
the relative standard deviation, � � s�R�. The Schulz
distribution, on the other hand, is written as

G�R� � �m � 1

R� �m�1 Rm

m! exp��R�m � 1�
R� �, (2)

where �2 � 1��m � 1�.

B. Intensity-Weighted Distribution

The quantity measured in DLS is the intensity–
intensity autocorrelation function g2���. In most cases
this function can be written in terms of the field–field
autocorrelation function g�1���� through the Siegert
relation1,2

g�2���� � B � �	g�1����
2, (3)

where � is the delay time and � is a factor that de-
pends on the experimental geometry. At long delay
times, the correlation function decays to a baseline
value B, which should be very close to 1.

For monodisperse particles undergoing Brownian
motion, the field–field autocorrelation function de-
cays exponentially as follows:

g�1���� � exp	���
, (4)

with a decay rate � � Dq2 that depends on the diffu-
sion coefficient of the particles D and on the mag-
nitude of the scattering wave vector q � �4�n�	�
sin�
�2�, where 	 is the wavelength of the light source
in vacuum, n is the refractive index of the medium,
and 
 is the scattering angle. The hydrodynamic ra-
dius can then be determined by using the Stokes–
Einstein relation:

Rh �
kBT

6��D �
kBTq2

6���
, (5)

where kB is Boltzmann’s constant, T is the tempera-
ture, and � is the viscosity of the dispersant.

For polydisperse particles, there will be a distribu-
tion of decay rates instead of a single decay rate. In
this case g�1���� is given by

g�1���� ��
0

�

G���exp	���
d�, (6)

where G��� describes the distribution of decay rates
and is normalized. G��� is characterized by a mean
decay rate

����
0

�

� G���d� (7)

and a relative variance

s�
2

��2
��

0

� �� � ���2

��2
G���d�. (8)
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After assuming a functional form for G���, we can fit
Eq. (3) to the intensity–intensity autocorrelation
function data by using Eq. (6) for the field–field au-
tocorrelation function. Then �� and associated poly-
dispersity �� can be determined by applying Eqs. (7)
and (8).

Alternatively, in a moments-based analysis, g�1����
is expanded in terms of the moments of the distribu-
tion3,4

g�1���� � exp	����
�1 �

2

2! �2 �

2

3! �3 � · · ·�, (9)

where 
n are the moments of the distribution and, in
particular, 
2 � s�

2 and 
3 represent the variance and
skewness of the distribution, respectively. � and ��

� s���� can be determined directly by fitting Eq. (3) to
the intensity–intensity autocorrelation function data
by using Eq. (9) for the field–field autocorrelation
function.

After the decay rate distribution has been deter-
mined, the particle size and size distribution can be
estimated. The hydrodynamic radius Rh is calculated
by using �� and Eq. (5). In these methods the relative
variance of Rh is generally assumed to be equal to the
relative variance of �.

Instead of working with a decay rate distribution,
we can reformulate the analysis in terms of a radius
distribution. Equation (6) can be written in terms of
an intensity-weighted radius distribution Gi�R� by
using Eq. (5):

g�1���� ��
0

�

Gi�R�exp��kBTq2

6��R ��dR, (10)

where Gi�R�dR � G���d� and Gi�R� is normalized.
The intensity-weighted mean radius Ri and polydis-
persity �Ri

can be determined by applying the results
for Gi�R�.

C. Number-Weighted Distribution

In general, the scattered intensity is proportional to
the square of the mass M of the particle so that each
particle’s contribution to the scattered intensity de-
pends strongly on its size.1 The scattered intensity
also has an angular dependence due to interference
effects that is represented by the form factor of the
particles. This angular dependence becomes more
pronounced for larger particles, with larger particles
contributing more to the scattered intensity at small
angles than at large angles. Consequently, Rh and Ri

determined from G��� and Gi�R�, respectively, be-
come angle dependent. To determine a size distribu-
tion that is independent of angle, we should include
M2 and the form factor in the analysis.

For vesicles, the form factor can be written as15

F�R� � �sin�qR�
qR �2

, (11)

and M2 is proportional to R4. The expression for
g�1���� in terms of the number-weighted distribution
Gn�R� is then written as

g�1���� �

�
0

�

Gn�R�R4F�R�exp	��kBTq2�6��R��
dR

�
0

�

Gn�R�R4F�R�dR

.

(12)

The number-weighted mean radius and polydis-
persity can be determined directly by fitting Eq. (3) to
the intensity–intensity autocorrelation function data
by using Eq. (12) for g�1���� with an appropriate func-
tional form of Gn�R�.

D. Relation between Gi�R� and Gn�R�

The number-weighted distribution Gn�R� can be writ-
ten in terms of the intensity-weighted distribution
Gi�R� as28

Gn�R� � A
Gi�R�

R4F�R�
, (13)

where

A ���
0

�
Gi�R�

R4F�R�
dR��1

(14)

has been introduced so that Gn�R� is normalized.
The mean radius and polydispersity of the number-

weighted distribution Gn�R� can then be calculated
from the intensity-weighted distributions by using
Eq. (13).

E. Relation between Rh and the Number-Weighted
Distribution

From the Stokes–Einstein relation, Eq. (5), the hy-
drodynamic radius can be written as

Rh �
kBTq2

6��

1

��
�

kBTq2

6��

1

R�1�
. (15)

The hydrodynamic radius and associated polydisper-
sity �Rh

can then be calculated from the number dis-
tribution Gn�R�,
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Rh �

�
0

�

Gn�R�R4F�R�dR

�
0

�

R�1Gn�R�R4F�R�dR

�

�
0

�

Gn�R�R4F�R�dR

�
0

�

Gn�R�R3F�R�dR

,

(16)

�Rn

2 �

�
0

�

Gn�R�R4F�R�dR�
0

�

R2Gn�R�F�R�dR

��
0

�

R3Gn�R�F�R�dR�2 � 1.

(17)

3. Materials and Methods

The method that we use to prepare vesicles was
described previously.29 The lipid used in these
studies was 1-stearoyl-2-oleoyl-sn-glycero-3-phos-
phatidylcholine (SOPC); it was purchased from
Avanti Polar Lipids (Birmingham, Alabama). The
vesicles were prepared by hydrating SOPC in puri-
fied water from a Milli-Q plus water purification sys-
tem (Millipore, Bedford, Massachusetts). The use of
purified water ensures the production of spherical
vesicles.8 The hydrated sample was taken through
a freeze–thaw–vortex process and pre-extruded
through two 400 nm diameter polycarbonate track
etch (PCTE), membranes. The pre-extruded samples
were then extruded through PCTEs with nominal
pore radii of 50 and 100 nm. For the rest of the paper,
vesicles produced using these pore sizes are defined
as 50 and 100 nm vesicles, respectively. DLS mea-
surements were performed on samples consisting of a
ratio of 0.1 mg lipid to 1 ml water.

An ALV DLS�SLS-5000 spectrometer�goniometer
manufactured by ALV-Laser GmbH (Langen, Ger-
many) and a HeNe laser �	 � 633 nm� were used for
these experiments. The ALV correlator features 288
logarithmically spaced delay times ranging from
200 ns to 1 s. Samples were measured at scattering
angles ranging from 20° to 150°. Five measurements
were made at each angle.

Fits to the data were made using weighted nonlin-
ear least-squares fitting routines. In general, no sig-
nificant difference in the goodness-of-fit parameter or
the residuals was observed either when the two dif-
ferent distributions, Schulz and Gaussian, were used
or when fits made using intensity-weighted distribu-
tions were compared with number-weighted distribu-
tions in fits of the same data. The baseline B was a
parameter in each fit; the other parameters were �
and the parameters describing the distribution.

4. Results and Discussion

Intensity correlation functions calculated for each
measurement were analyzed by fitting Eq. (3) and
one of four different forms of the field-correlation
function g�1����, Eqs. (6), (9), (10), and (12) to the data.

First we determined the results for the decay rate
distributions. We fit a model function based on the
expansion of the correlation function in terms of
the moments of the decay rate distribution [Eq. (9)] to
the data. In general, it was found to be necessary to
fit Eq. (9) only up to the second order. We then as-
sumed a Gaussian distribution and fit a model func-
tion based on a correlation function as given by Eq.
(6) to the data. The mean decay rate and polydisper-
sity ��� and ��, respectively) were determined from
these fits, and the hydrodynamic radius Rh and poly-
dispersity �Rh

were calculated. The results for the
hydrodynamic radius Rh and the polydispersity �Rh

as
a function of q for 50 and 100 nm vesicles are shown
in Figs. 1(a) and 1(b), respectively. Here Rh was nor-
malized to the value of Rh at 20° to allow comparison
of the q dependence of the hydrodynamic radius cal-
culated for 50 and 100 nm vesicles. The results from
both approaches are consistent: Rh decreases with
increasing q, and the q dependence is more pro-
nounced for the larger vesicles. The mean radius of
the larger vesicles decreases by 20% over the angular

Fig. 1. (a) Hydrodynamic radius normalized by the radius mea-
sured at 20° and (b) polydispersity of 50 and 100 nm vesicles as a
function of q. The results were determined by using g�1����, consist-
ing of either a decay rate distribution [Eq. (6)] or a moments-based
analysis [Eq. (9)].
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range measured in these experiments. The results for
�Rh

do not indicate any particular q dependence.
The intensity-weighted mean radius Ri and poly-

dispersity �Ri
were determined from the results of

fitting with Eq. (10). Figures 2 and 3 show (a) the
intensity-weighted mean radius Ri and (b) the poly-
dispersity �Ri

as a function of q for 50 and 100 nm
vesicles, respectively. The results for Rh and �Rh

de-
termined by using g�1���� expressed in terms of the
Gaussian decay rate distribution are also shown for
comparison. As expected, the intensity-weighted
mean radius also decreases as q increases, with the q
dependence more pronounced for larger vesicles.
There is a significant difference between the mean
radius and the polydispersity found using the decay
rate and radius distributions in g�1����. This reflects
the fact that these are actually different averages; Ri

is obtained by averaging over R while Rh is obtained
by averaging over R�1. Ri is larger than Rh for both
Gaussian and Schulz distributions, where as the
Gaussian Ri is slightly smaller than the Schulz Ri. On
the other hand, the Schulz �Ri

is similar to �Rh
, while

the Gaussian �Ri
is systematically smaller than

both the Schulz �Ri
and �Rh

.
The number-weighted mean radius Rn and polydis-

persity �Rn
were first determined from the results of

fitting with Eq. (12). Figures 4 and 5 show (a) the
number-weighted mean radius Rn and (b) the poly-
dispersity �Rn

as a function of q for 50 and 100 nm
vesicles, respectively. The number-weighted mean
radius and polydispersity can be determined by di-
rectly fitting the data, although the results from fit-
ting the Schulz distribution to the data are
significantly better. With the exception of the data
taken at the smallest q, there is no significant q de-
pendence for Rn and �Rn

determined by using the
Schulz distribution, and the values obtained for
the polydispersity are reasonable. However, when
the Gaussian distribution is used, more q dependence
is observed in the results for Rn, especially for the
larger vesicles. Values for Rn are low for both distri-
butions at the smallest q measured. This is not sur-
prising, as DLS measurements at low q are very
sensitive to dust or aggregates in the sample. Neither

Fig. 2. (a) Intensity-weighted mean radius Ri and (b) polydisper-
sity �Ri

of 50 nm vesicles as a function of q. The results were
determined by using g�1����, expressed in terms of the intensity-
weighted radius distribution Gi�R� [Eq. (10)], in which Gaussian
and Schulz distributions were used for Gi�R�. For comparison, the
results for 50 nm vesicles from Fig. 1 are also shown.

Fig. 3. (a) Intensity-weighted mean radius Ri and (b) polydisper-
sity �Ri

of 100 nm vesicles as a function of q. The results were
determined by using g�1����, expressed in terms of the intensity-
weighted radius distribution Gi�R� [Eq. (10)], in which Gaussian
and Schulz distributions were used for Gi�R�. For comparison, the
results for 100 nm vesicles from Fig. 1 are also shown.
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would be accounted for in these distributions, which
are monomodal. There is a significant difference in
the values found for Rn and �Rn

, depending on
whether the Gaussian or Schulz distribution is used.
The mean radius found using the Schulz distribution
is larger than that found using the Gaussian distri-
bution. The value of �Rn

from the Gaussian distribu-
tion, however, is very large, particularly at small q.
The fact that the Schulz distribution does a better job
of fitting data for extruded vesicles is consistent with
the findings of other authors.20

Next we tested whether the results obtained for
intensity-weighted distributions can be used to cal-
culate number-averaged results for Rn and �Rn

. The
mean radius and polydispersity Rn and �Rn

were cal-
culated by using a number distribution given by Eq.
(13), with intensity-weighted distributions deter-
mined by fits to the data. Only the results for the
Schulz distribution are shown in Figs. 4 and 5 for
50 and 100 nm vesicles, respectively. For this case,

calculated Rn and �Rn
agree well with the results from

direct fitting of the number-weighted distribution to
the data. However, the results for the Gaussian dis-
tribution are not shown because the results calcu-
lated for Rn and �Rn

are significantly different from
the results of the direct fit of the number distribution
to the data; the results for Rn are much too small, and
those for �Rn

are much too large.
One possible source for the failure of the conversion

from an intensity-weighted Gaussian distribution to
a number-weighted distribution is the polydispersity
of these samples. This can be confirmed by calculat-
ing Rn and �Rn

from Ri and �Ri
respectively, by using

Eq. (13) and a range of �Ri
. Calculated results for Rn

and �Rn
for vesicles with Ri of 60 and 90 nm as a

function of �Ri
are shown in Figs. 6(a) and 6(b), re-

spectively. The values chosen for Ri are close to those
measured for 50 and 100 nm vesicles, respectively.
In the graph the number-weighted values are nor-
malized by the intensity-weighted values to make it
easy to compare the results for 50 and 100 nm vesi-

Fig. 4. (a) Number-weighted mean radius Rn and (b) polydisper-
sity �Rn

of 50 nm vesicles as a function of q. The results were
determined by using g�1���� expressed in terms of the number-
weighted radius distribution Gn�R� [Eq. (12)], in which Gaussian
and Schulz distribution were used for Gn�R�. For comparison, Rn

and �Rn
, calculated using Eq. (13) and fit results for Ri and �Ri

as
shown in Fig. 2, are also shown. The error bars represent the
standard deviation of the mean value from five measurements.

Fig. 5. (a) Number-weighted mean radius Rn and (b) polydisper-
sity �Rn

of 100 nm vesicles as a function of q. The results were
determined using g�1���� expressed in terms of the number-
weighted radius distribution Gn�R� [Eq. (12)] in which Gaussian
and Schulz distributions were used for Gn�R�. For comparison, Rn

and �Rn
, calculated using Eq. (13) and fit results for Ri and �Ri

shown in Fig. 2, are also shown. The error bars represent the
standard deviation of the mean value from five measurements.
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cles. When �Ri
is small, Rn and �Rn

are almost the
same as Ri and �Ri

, respectively. As �Ri
increases, Rn

becomes smaller than Ri, while �Rn
becomes larger

than �Ri
. For �Ri

larger than a certain threshold value,
Rn becomes very small, while �Rn

becomes very large.
In this case the threshold value above which the dif-
ference between the two results is unacceptable is
much smaller for the Gaussian distribution (approx-
imately 0.15) than it is for the Schultz distribution
(approximately 0.30). As the polydispersity observed
in these samples is �0.15, the conversion from
an intensity-weighted Gaussian distribution to a
number-weighted distribution yields unreasonable
values.

5. Conclusions

In this paper we have demonstrated an approach that
can be used to determine the number-weighted mean
radius and the polydispersity directly from DLS data.
By fitting number-weighted radius distributions, and
including the mass and form factor in the fitting, the
apparent problem of q dependence of DLS-measured
particle size can be overcome. We have also shown

that results obtained by using an intensity-weighted
distribution should be converted to number-weighted
results with care, especially if the polydispersity is
large. We have shown this by using nonlinear least-
squares fitting techniques to fit a correlation function
that is calculated by numerical integration over the
product of a number distribution of the radii, the
particle form factor, the square of the mass, and the
exponential decay factor. Alternatively, one could in-
corporate information about particle shape and scat-
tering into Contin or nonnegative least-squares
fitting method.

We have applied this technique to measurements
of extruded vesicles. In particular, we have used
Gaussian and Schulz distributions, representing
symmetric and asymmetric distributions, respec-
tively, to determine the mean radius and the polydis-
persity for vesicles extruded through 50 and 100 nm
pores. The q dependence of the radius determined by
using a number-weighted distribution was found to
be minimal for 50 and 100 nm vesicles when a Schulz
distribution was used but was acceptable only for
50 nm vesicles when the Gaussian distribution was
used. The results are also consistent with the size
distribution of extruded vesicles’ being asymmetric.

The authors gratefully acknowledge the financial
support of the Natural Sciences and Engineering Re-
search Council of Canada.
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